BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE- 587 102

DEPARTMENT OF MECHANICAL ENGINEERING

22UME121C		Cre	edits: 03
L:T:P - N _L : N _T : N _P : 3:0: 0	ELEWIENTS OF MECHANICAL ENGINEERING	CIE N	/larks : 50
Total Hours/Week : 4		SEE N	/larks : 100
	UNIT - I		10 Hrs.
Energy sources and power plants	5:		
Review of energy sources, cons	truction and working of hydel power plant, t	hermal	power plant.
Nuclear power plant, solar power	^r plant, tidal power plant, wind power plant, Envi	ronmen	ital issues like
global warming, ozone depletion.			
Steam formation and steam turb	nnes:		ution Currifi
Introduction, Formation of stear	m, IS, PH, PV diagram, Types of steam, Steam	i prope	rties, Specific
Steam turbing: Classification and	ergy and Entropy (Numerical problems)		
Mater turbines: Introduction Cl	assification. Working principle and operation of	f Kanlar	Francis and
Pelton turbine	assincation, working principle and operation o	т картап	
	UNIT – II		10 Hrs.
Automobile Engineering:			
Introduction. Classification of IC	engines. Parts of IC engine. IC Engine nomeno	lature.	Working of 4
stroke petrol and diesel engine	es Comparison between SI and CI engines	Calcula	tions IP BP
mechanical efficiency thermal	efficiency volumetric efficiency specific fuel	consum	notion brake
specific operation pro	bloms of 4 stroke angine Clutch Gear box. Diff	orontial	Introduction
specific energy consumption, Pro	blems of 4 stroke engine. Clutch, Gear box, Diff	erential	
Deficience and hybrid vehicles.	(11) (AC).		
Reingeration & Air-conditioning	(RVAC).	frigorat	ion (TD) Co
afficient of performance Delet	geration, Principle of Reingeration, Unit of Re	ingerat	.1011 (TR), CO
efficient of performance, Relat	tive co-efficient of performance. working of	vapor	compression
remperation system (VCRS), V	working of vapor absorption refrigeration	system	(VARS) and
			10 Hrc
Fundamentals of Mashina Tools	and Operations:		10 HIS.
Fundamentals of Machining and	maching tools. Construction and Working Bring	inla of l	atha Milling
drilling machines and applicatio	Machine tools, construction and working Finc	to bo	actie, winning
arming machines and applications	ins. (NO sketches of machine tools, sketches	to be u	ised only for
Introduction to Advanced Man	ufacturing Systems: Introduction component	c of C	
advantages and applications of C	NC 2D printing	.5 01 CF	NC,
Motal Joining Processos: Soldorir	NC, 5D printing.		
Definitions Classification and me	thods of soldering brazing and welding Brief de	scrintio	n of arc
welding Oxy-acetylene welding	thous of soldering, brazing, and weiding. Brief de	scriptio	
weiding, Oxy-acetylene weiding.	LINIT – IV		10 Hrs
Mechanical Power Transmission:			101113.
Gear Drives: Types - spur, helic	al. bevel. worm and rack and pinion, velocity (ratio, sir	mple and
compound gear trains (simple nu	merical problems).	,	
Belt Drives: Introduction. Types	of belt drives (Flat and V-Belt Drive). length of	of the b	elt and
tensions ratio (simple numerical r	problems).		
Introduction to Mechatronics an	d Robotics: open-loop and closed-loop mechatro	onic svst	ems. Joints 8
links, Robot anatomy, Application	ons of Robots in material handling, processin	ig and a	assembly and

inspection.

Reference Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Elements of Mechanical Engineering, K R Gopala Krishna, Subhash Publications, 2008.
- 2. Elements of Workshop Technology (Vol. 1 and 2), Hazra Choudhry and Nirzar Roy, Media Promoters and Publishers Pvt. Ltd., 2010.
- 3. An Introduction to Mechanical Engineering, Jonathan Wickert and Kemper Lewis, Third Edition, 2012.
- 4. Manufacturing Technology- Foundry, Forming and Welding, P.N.Rao Tata McGraw Hill 3rd Ed., 2003.
- 5. Robotics, Appu Kuttan KK K. International Pvt Ltd, volume 1.

Course Outcomes:

- CO1: Calculate the enthalpy and internal energy of different types of steams and identify the different types of energy resources, steam turbine and waterturbines
- CO2: Compute and analyze the performance of IC engines used in automobiles and concept of electric, hybrid vehicles for future mobility and refrigeration and air conditioning
- CO3: Illustrate the different conventional, advance manufacturing systems and various metal joiningprocesses.
- CO4: Solve problems on velocity ratio of gear trains and belt drives and interpret different gear drives and belt drive and also identify the aspects of future mobility and applications of of robotics

Course		Programme Outcomes (POs)														
Outcomes	РО	D PO PO PO PO PO PO PO PO PO PO1 PO1 PO1														PSO4
(COs)	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	
1	1	2	-	-	-	-	1	-	-	-	-	1	1	-	-	-
2	1	2	-	1	-	-	-	-	1	-	-	1	1	-	-	-
3	1	1	-	-	1	-	-	-	-	-	-	1	1	-	-	-
4	1	2	-	-	-	-	-	-	1	-	-	1	1	-	-	-

L:T:P :: 2:0:2 TotalHours:40 CIEMarks:50

SEEMarks:50

UNIT-I 10Hrs. Introduction: Significance of engineering drawing, BIS Conventions of Engineering Drawing. Free hand sketching of Engineering Drawing. Introduction to Computer Aided Drafting software, Co ordinate system and reference planes HP, VP, and RPP & LPP of 2D/3D environment. Selection of drawing sheet size and scale. Commands and creation of Lines, coordinate points, axes, polylines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim. extend, break, chamfer, fillet and curves. **Orthographic Projections of Points and Lines:** Introduction to Orthographic projections: Orthographic projections of points in 1st and 3rd quadrants (for practice only, not for CIE and SEE). **Projections of lines** located in first quadrant only, line parallel to both the planes, perpendicular to one plane and parallel to other, inclined to one plane and parallel to other, inclined to both the planes. Determinations of true length and true inclinations with principal planes. UNIT-II 10Hrs. **Orthographic Projections of planes:** Projections of planes- perpendicular to the both the planes, parallel to one plane and perpendicular to other, inclined to one plane and perpendicular to other and inclined to both the planes. (Placed in First quadrant only using change of position method). UNIT-III 10 Hrs. **Orthographic Projections of solids** Orthographic Projection of right regular solids (Solids Resting on HP only): Prisms, Pyramids, Cones, and Cylinders (triangle, square, rectangle, pentagon, and hexagon) with axis/base inclined to HP and profile views. **Development of Lateral Surfaces of Solids** Development of Lateral Surfaces of right regular prisms, pyramids, cylinders and cones resting with base on HP only UNIT-IV 10Hrs. Isometric Projections: Isometric scale, Isometric Projection of hexahedron (cube), right regular prisms, pyramids, Cylinders, Cones and spheres. Isometric Projection of combination of two simple solids (Co-Axial only). Free hand Sketching; True free hand, Guided Free hand, Roads, Buildings, Utensils, Hand tools & Furniture's etc. Drawing Simple Mechanisms; Bicycles, Tricycles, Gear trains, Ratchets, two-wheeler cart & Fourwheeler carts etc.. (Free hand sketches). Scheme of Examination **CIE**- Continuous Internal Evaluation - Theory (Using grid sheet)

СЕ	Max Marks	Reduced Marks
Ι	40 Marks	20 Marks

II	40 Marks	20 Marks	
	Assignment	10 Marks	
Reduced to 50%	o of Marks	25 Marks	

CIE - Continuous Internal Evaluation - Practical (Lab print outs)

Particulars	Max Marks	Reduced Marks				
Lab classes (using sketch book and print outs)	30 Marks	15 Marks				
Lab CIE	20 Marks	10 Marks				
		25 Marks				

Total Marks: CIE (Theory + Practical)

Theory	Practical	Total
(Using grid sheet)		
25 Marks	25 Marks	50 Marks

SEMESTER END EXAMINATION

The Lab-SEE of three hours is conducted as per the model question paper for 100 marks and scaled down to 50 Marks. 50% weightage for sketch and 50% weightage for printouts in both CIE and SEE.

QUESTION PAPER FORMAT AWARD OF MARKS

Q. No.	Question	Marks
1	Straight lines OR Planes	30 Marks
2	Solids	40 Marks
3	Development of Surfaces OR Isometric Projections	30 Marks
	Total Marks	100 marks

Q.No	Solutions & Sketching on Grid Sheets	Computer display & Printout	Total			
1	50% (15 Marks)	50% (15 Marks)	100% (30 Marks)			
2	50% (20 Marks)	50% (20 Marks)	100% (40 Marks)			
3	50% (15 Marks)	50% (15 Marks)	100% (30 Marks)			

Reference Books:

- 1) K.R.Gopalkrishna, 'Engineering Drawing', vol. I and II, 23rd edition, Subhas, 2014.
- 2) N.D.Bhat "Engineering Drawing"
- 3) R.K.Hegde and Niranjan Murthy, "Engineering Graphics" 1st edition, Sapna, 2003.
- 4) P.I.Varghese, "Engineering Graphics", McGraw Hill, 2013

Course Outcomes:

At the end of the course the student will be able to:

CO 1: Draw and communicate the objects with definite shape and dimensions

- **CO 2:** Recognize and draw the shape and size of objects through different views.
- **CO 3:** Develop the lateral surface of the objects

CO 4: Draw isometric views and freehand sketches of mechanisms and simple machine parts

CO 5: Create a drawing views using CAD software.

Course Outcomes				Pro	gran	nme		Program Outcom	n Specific es (PSOs	:)						
	1	2	3	4	5	6	12	1	2	3	4					
CO1	3	2			3	1		1	1	3		1	1	1		
CO2	3	2			3	1		1	1	3		1	1	1		
CO3	3	2			3	1		1	1	3		1	1	1		
CO4	3	2			3	1	1		1	3		1	1	1		
CO5	3	3 2 3 1 3 1									1	1				

22UME142B

L:T:P - 2 : 2: 0 Total Hours/Week: 4

SEE Marks: 50

UNIT-I	10 Hrs
Introduction to composite materials 5 Hours	
Definition and classification of composites based on matrix and reinforcement, Characteristics of	f composite
materials, Fibrous composites, Laminate composites and particulate composites.	
Factors which determine the properties of composites, Benefits of composites, properties and	nd types of
reinforcements and matrices, Reinforcement-matrix interface. 5 Hours	5
UNIT–II	10 Hrs.
Polymer matrix composites	
Introduction, Polymer matrices, Processing methods like Lay up and curing, open and closed mo	old process-
hand lay up techniques, laminate bag molding. 5 Hours	
Production procedures for bag molding, filament winding, pultrusion, pulforming, thermo-formi	ng, molding
methods, properties of PMCs and applications, Some commercial PMCs. 5 Hours	
UNIT–III	10 Hrs.
Metal matrix composites	
Introduction, Metallic matrices, Classification of MMCs, Need for production of MMCs, Interfa	ace reactions,
processing methods like Powder metallurgy, diffusion bonding. 5 Hours	
Melt stirring Compo/Rheo casting Squeeze casting Liquid melt infiltration Spray deposition	n and In situ
Processes, Properties of metal matrix composites, Applications, Some commercial MMCs.	
5 Hours	
UNIT–IV	9 Hrs.
Cutting, Machining and Joining of Composites	
Continuous fibers, Iso-stress condition, Iso-strain condition, critical volume fraction of fiber an	d minimum
volume fraction of fiber, Numericals on modulus of rigidity, and mechanics of discontinu	ious fibers.
5 Hours	
Cutting and machining of composites: Reciprocating knife cutting, cutting of cured composite	loining of
composites: Mechanical fastening, Adhesive bonding. 4 Hours	, , , , , , , , , , , , , , , , , , , ,
Reference Books	
1 Composite Science and Engineering K. K. Chawla, Springer Verlag, 1998	
 Introduction to composite materials Hull and Clyne Cambridge University Press. 2nd F 	dition, 1990
3. Composite Materials: Engineering and Science F. L. Mathew and R. D. Rawlings, Wood	dhead
Publishing Limited, 1999	
4. Composite materials handbook, MeingSchwaitz, McGraw Hill Book Company, 1984	
5. Mechanics of Composite Materials, Robert M. Jones, McGraw Hill Kogakusha Ltd, 199	8
6. Composite materials, S. C. Sharma, Narosa Publishing House, 2000	
7. Mechanics of composites, Artar Kaw,CEC Press, 2002	
Course Outcomes	
After completion of the course student will be able to	
CO1: Solve the numerical problems on modulus of elasticity of the EPD composites	
Illustrate the types of composites. Factors influencing the mechanical behaviour.	

- **CO2:** Analyse the critical volume fraction of fibres in the FRP composites.
- **CO3:** Synthesize polymer matrix and metal matrix composites.

CO4: Use the abrasive water jet machining of composites. Illustrate the cutting and joining of composites.

Course				Pro	gran	nme	Program Specific Outcomes (PSOs)									
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
C01	2	1	1	-	-	-	-	1	-	1	-	-	2	1	1	-
CO2	1	2	1	-	-	-	-	1	-	1	-	-	1	2	1	-
CO3	-	1	1	2	-	-	-	1	-	1	-	-	-	1	1	2
CO4	-		1	1	2	-	-	1	-	1	-	-	-	-	1	2

Hrs./Week : 03 Total Hours : 40 CIE Marks : 50

UNIT - I	10 Hrs.									
Robot Basics										
Robot-Basic concepts, Need, Law, History, Anatomy, specifications. Robot configuration	ons-cartesian,									
cylinder, polar and articulate. Robot wrist mechanism, Precision and accuracy of robot.										
ROBOT ELEMENTS										
End effectors-Classification, Types of Mechanical actuation, Gripper design, Robot drive sy	^r stem									
Types, Position and velocity feedback devices-Robot joints and links-Types, Motion interpo	olation									
UNIT – II	10 Hrs.									
ROBOT KINEMATICS AND CONTROL										
Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D										
Transformation-Scaling, Rotation, Translation Homogeneous transformation.										
Control of robot manipulators - Point to point, Continuous Path Control, Robot programm	ing									
UNIT – III	10 Hrs.									
ROBOT SENSORS										
Sensors in robot – Touch sensors-Tactile sensor – Proximity and range sensors. Force sens	or-Light									
sensors, Pressure sensors, Introduction to Machine Vision and Artificial Intelligence.										
UNIT – IV	10 Hrs.									
ROBOT APPLICATIONS										
Industrial applications of robots, Medical, Household, Entertainment, Space, Underwater,	Defense,									
Disaster management. Applications, Micro and Nano-robots, Future Applications.										
Learning Resources:										
1. Mikell P. Groover, Mitchell Weiss, Roger N Nagel, Nicholas G Odrey, "Industrial Robotics	5									
Technology, Programming and Applications", Tata – McGraw Hill Pub. Co., 2008.										
2. Deb.S.R and Sankha Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill										
Publishing Company Limited, 2010.										
3. Klafter.R.D, Chmielewski.T.A, and Noggin's., "Robot Engineering: An Integrated Approach", Prentice										
Hall of India Pvt. Ltd., 1994.										
4. Fu.K.S, Gonzalez.R.C&Lee.C.S.G, "Robotics control, sensing, vision and intelligence", Tata	a- McGraw									
HIII PUD. CO., 2008										
5. Yu. Industrial Robotics , MIR Publishers Moscow, 1985.										
Course Outcomes:										
On completion of the course the student will be able to:										
1 list and explain the basic elements of industrial robots										
2 Analyse robot kinematics and its control methods										
2. Classify the various concors used in robots for better performance										
5. Classify the valious sensors used in robots for better performance.										

4. Summarize various industrial and non-industrial applications of robots.

Course Outcomes	Programme Outcomes (POs)													Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4		
CO1	2	1	1	-	-	-	-	1	-	1	-	-	2	1	1	-		
CO2	1	2	1	-	-	-	-	1	-	1	-	-	1	2	1	-		
CO3	-	1	1	2	-	-	I	1	-	1	-	-	-	1	1	2		
CO4	-		1	1	2	-	-	1	-	1	-	-	-	-	1	2		

LINIT-I	10Hrs
Introduction: Role of Mechanical Engineering in Industries and Society- Emerging	Trends and
Technologies in different sectors such as Energy Manufacturing Automotive Ap	rosnace and
Marine sectors	Ospace, and
Energy Introduction and applications of Energy sources like Eossil fuels. Nuclear	fuels Hydel
Solar wind and bio-fuels. Environmental issues like Global warming and Ozone de	nletion
Engineering Materials: Types and annlications of Ferrous & Nonferrous M	etale cilica
ceramics glass graphite diamond and nolymer Shape Memory Alloys	elais, sinca,
	10Hrs.
Machine Tool Operations:	1011101
Working Principle of lathe Lathe operations: Turning, facing, knurling, Working	principles of
Drilling Machine, drilling operations: drilling, horing, reaming, Working of Milli	ng Machine.
Milling operations: plane milling and slot milling	
(No sketches of machine tools, sketches to be used only for explaining the operation	nns).
Introduction to Advanced Manufacturing Systems: Introduction, componer	nts of CNC.
advantages and applications of CNC. 3D printing.	10 0,
Joining Processes: Soldering. Brazing and Welding. Definitions. classification	of welding
process. Arc welding, Gas welding and types of flames.	
UNIT-III	10 Hrs.
Introduction to IC Engines: Components and Working Principles, 4-Strokes Petro	ol and Diesel
Engines.Application of IC Engines.	
Insight into Future Mobility; Electric and Hybrid Vehicles, Components of	Electric and
HybridVehicles. Advantages and disadvantages of EVs and Hybrid vehicles.	
UNIT-IV	10Hrs.
Introduction to Mechatronics and Robotics: open-loop and closed-loop mechatro	onic systems.
Classification based on robotics configuration: polar cylindrical, Cartesian coo	ordinate and
spherical. Application, Advantages and disadvantages.	
Automation in industry: Definition, types – Fixed, programmable and flexible	automation,
basic elements with block diagrams, advantages	
Introduction to IOT: Definition and Characteristics, Physical design, protocols, Logi	cal design of
IoT, Functional blocks, and communication models.	
Reference Books:	
1. Elements of Workshop Technology (Vol. 1 and 2), Hazra Choudhry and Nirza	ar Roy, Media
Promoters and Publishers Pvt. Ltd., 2010.	
2. Manufacturing Technology- Foundry, Forming and Welding, P.N.Rao Tata Mc	Graw Hill 3rd
Ed., 2003.	
3. Internal Combustion Engines, V. Ganesan, Tata McGraw Hill Education; 4th edi	tion, 2017
4. Robotics, AppuKuttan KK K. International Pvt Ltd, volume 1	
5. Dr SRN Reddy, RachitThukral and Manasi Mishra, " Introduction to Internet	of Things: A
Practical Approach", ETI Labs	
6. Raj kamal, "Internet of Things: Architecture and Design", McGraw hill.	
7. Elements of Mechanical Engineering, K R Gopala Krishna, Subhash Publications	, 2008
8. An Introduction to Mechanical Engineering, Jonathan Wickert and Kemper	Lewis, Third
Edition, 2012	

Course C	Dutcomes:
CO1: Ex va	xplain the role of Mechanical Engineering w.r.t the emerging trends and technologies in arious sectors, knowledge of various sources of energy and engineering materials
CO2: De joir	escribe different conventional, advanced manufacturing systems and various metal ning processes
CO3: Cor ele	mpute and analyze the performance of IC engines used in automobiles and concept of ectric and hybrid vehicles for future mobility
CO4: Enl IOT	ighten about the fundamentals of Mechatronics, Robotics, Automation in industry and
Questior	n paper pattern for SEE:
1. PA syl	ART A (Compulsory): Answer all questions each carrying 1 or 2 marks covering the entire llabus (20 marks)
2. PA	RT B: Answer 4 full questions choosing one full question from each unit.
Ead	ch full question carries 20 marks and should not have more than 4 subdivisions.
Assignm	ent Test for 10 Marks:
Assignm	ent 1: 5 marks Multiple choice questions
Assignm	ent 2: 5 marks 10 Questions from previous SEE question papers

Course Outcome		Program Outcomes (Pos)														
s (Cos)	РО	РО	PO	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO	PSO
3 (003)	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	1	1	-	2	-	-	-	-	1	-	-	1	1	-	-	-
CO2	1	2	1	-	-	-	-	-	-	1	-	1	1	-	-	-
CO3	1	2	1	-	-	-	-	-	-	1	-	1	1	-	-	-
CO4	1	1	-	-	2	-	-	-	-	1	-	1	1	-	-	-

Table: Matrix to describe mapping of Pos with Cos